Content area

Abstract

The main theme of this thesis is the investigation of the physics of acceleration and transport of particles in solar flares, and their thermal and nonthermal radiative signatures.

The observational studies, using hard X-rays (HXRs) observed by the RHESSI mission, concentrate on four flares, which support the classical magnetic reconnection model of solar flares in various ways. In the X3.9 flare occurring on 11/03/2003, there is a monotonic upward motion of the loop top (LT) source accompanied by a systematic increase in the separation of the footpoint (FP) sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 event exhibits rarely observed two coronal sources. The two sources (with almost identical spectra) show energy-dependent structures, with higher-energy emission being close together. This suggests that reconnection takes place within the region between the sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the FPs correlates with the mean magnetic field. The two FPs show asymmetric HXR fluxes, which is qualitatively consistent with the magnetic mirroring effect. The M1.7 flare on 11/13/2003 reveals evidence of evaporation directly imaged by RHESSI for the first time, in which emission from the legs of the loop appears at intermediate energies. The emission centroid moves toward the LT as time proceeds, indicating an increase of density in the loop.

The theoretical modeling of this work combines the stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by nonthermal electrons. We find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is found to be present and effects of suppression of conduction are tested in the presence of hydrodynamic flows.

Details

Title
Characteristics of solar flare hard x -ray emissions: Observations and models
Author
Liu, Wei
Year
2007
Publisher
ProQuest Dissertations Publishing
ISBN
978-0-542-98403-7
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
304809969
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.